
ThePragmatic
Bookshelf

PragPub
The First Iteration

Issue #24
June 2011

IN THIS ISSUE

* Pair Programming in a Flash
* Practical Mock Advice
* Language Lessons
* When Did That Happen?

PragPub • June 2011

Contents

FEATURES

Pair Programming in a Flash ... 12
by Jeff Langr, Tim Ottinger

The rules of pairing, pairing smells, and what you can do when a pair isn’t available.

Practical Mock Advice ... 17
by Zach Dennis

Zach shows mocks some much-needed respect.

Language Lessons .. 24
by Michael Swaine

A guide to all the programming language articles published in PragPub to date.

When Did That Happen? ... 30
by Dan Wohlbruck

The author of the first book on computer programming was born in this month, nearly a century ago.

— i —

DEPARTMENTS

Up Front ... 1
by Michael Swaine

Something old, something new...

Choice Bits .. 2
On a bus going to a secret location! Fueled by desperation! And a disturbing lack of pants.

Guru Meditation .. 4
by Andy Hunt

Learning curves are typically not uniformly steep, or we’d call them learning slopes. Andy tackles one of the steeper
segments of the agile learning curve.

Way of the Agile Warrior ... 8
by Jonathan Rasmusson

Velocity is a powerful tool for planning. The trick is to get managers to use it correctly.

Calendar ... 33
Author sightings, upcoming conferences, and all the coverage of the royal wedding that you will ever need.

Shady Illuminations .. 38
by John Shade

John can’t resist the temptation to make fun of dumb laws, short attention spans among technology marketers, and Mark
Zuckerberg.

Except where otherwise indicated, entire contents copyright © 2011 The Pragmatic Programmers.

Feel free to distribute this magazine (in whole, and for free) to anyone you want. However, you may
not sell this magazine or its content, nor extract and use more than a paragraph of content in some
other publication without our permission.

Published monthly in PDF, mobi, and epub formats by The Pragmatic Programmers, LLC, Dallas, TX,
and Raleigh, NC. E-Mail support@pragprog.com, phone +1-800-699-7764. The editor is Michael Swaine
(michael@pragprog.com). Visit us at http://pragprog.com for the lowdown on our books, screencasts,
training, forums, and more.

ISSN: 1948-3562

— ii —

http://pragprog.com

Up Front
Permeable Boundaries

by Michael Swaine

Something old, something new...

Electronic publishing is permeable publishing.

Old-fashioned print-on-paper publishing wrapped each book or magazine in
an impermeable membrane, the cover. Inside the cover, you were in the world
of Amazing Stories or Wuthering Heights. Each book or magazine was its own
world.

Electronic publishing, potentially at least, embeds a book or magazine in the
real world. Or the World Wide Web, which is rapidly coming to mean the
same thing, it seems.

An electronic magazine, like this one, can link to articles outside its covers.
It can even link to articles in other issues of itself. So, as we do in this issue,
we can include an additional two dozen articles that logically fit the theme of
an article in this issue. And in doing so, we can present the material in a new
context, as we do in “Language Lessons” in this issue.

But I don’t want to give the impression that this issue is all PragPub Remixed.

Zach Dennis is here with some fresh insights on using Mocks. Zach helped
write The RSpec Book [U1], so he knows his Mocks.

Jeff Langr and Tim Ottinger have been demonstrating what you might call
pair authoring in PragPub recently, and they are back this month with the first
part of a two-part exploration of pair programming.

And that’s not all. Dan Wohlbruck flashes back to the first book on
programming ever written, Andy Hunt tackles one of the steeper segments of
the agile learning curve, and Jonathan Rasmusson devotes his “Way of the
Agile Warrior” column to getting you up to speed on velicity.

As for John Shade, well, he has a few things he wants to get off his chest.

Welcome to our permeable little world. Oh, and one more thing: Next issue
will be a bit special. We’re going to focus on Clojure, a language that has
permeable boundaries itself, with ties to one of the oldest programming
languages and some of the most cutting-edge applications.

External resources referenced in this article:

[U1] http://pragprog.com/refer/pragpub24/titles/achbd/the-rspec-book

PragPub June 2011 1

http://pragprog.com/refer/pragpub24/titles/achbd/the-rspec-book
http://pragprog.com/refer/pragpub24/titles/achbd/the-rspec-book

Pair Programming in a Flash
How to Pair, and Why

by Jeff Langr, Tim Ottinger

Jeff and Tim enjoy pairing so much that they want
you to learn how to do it well. Here they present
three cards on pairing from their Agile in a Flash [U1]

card deck, covering its fundamental rules, a number
of smells for you to sniff out, and guidelines for what
you can do when a pair isn’t available.

Yes, we’re going to resurrect this contentious practice that divides programmers
into oil-and-water camps. As much as some developers can’t stand the idea of
pairing, we continue to find value and enjoyment in it, hence our insistence
on revisiting it.

The Rules of Pairing
Most developers are at least familiar with the concept of pair programming, or
pairing, but let’s quickly review the ground rules. They seem brief and simple:

We didn’t dream up these rules for Agile in a Flash [U2] just to fill out the letters
from A through E! We learned these more-or-less original guidelines for pairing
as part of extreme programming. More than a decade later, after observing
many development teams adopt and apply them (or not!), we see little need
for these core rules to change. We’ve also noticed that teams that attempt
pairing and then subsequently give up have usually violated one or more of
these rules.

Yes, rules are meant to be broken—particularly as you advance to the shu-ha-ri
mastery phase of ri—but shu’ers and ha’ers should first obtain a solid
understanding of pairing by following all of the rules. Here’s why.

• All production code must be done by a pair. You build production code with
a pair to avoid institutionalizing low quality code in your system. Once
bad code gets in, it increases the cost of maintenance on your system. It’s
also expensive to remove. You could use after-the-fact review to sidestep
this #1 rule for pairing, but these reviews incur a high cost for what are
typically only small improvements to the quality of the overall solution.

PragPub June 2011 12

http://www.pragprog.com/refer/pragpub24/titles/olag/Agile-in-a-flash
http://www.pragprog.com/refer/pragpub24/titles/olag/Agile-in-a-flash

• Both parties contribute to a solution. Pairing is a social activity, which is
the primary reason it’s a challenging practice. Think of a pairing session
as a collaborative design session during which you capture the result in
code. You’re continually discussing the design—sometimes vocally,
sometimes in code. You’re not taking turns watching someone else
code—that would be pointless!

• Change pairs frequently. Creating quality software requires socializing the
code and solutions throughout the team. Stagnant pairings can result in
solutions that are almost as bad as those produced by lone, unchecked
developers. Try to take the time to swap in a new set of eyes for each
solution. Not only will bringing on a newcomer bring the quality of any
given solution up a notch, an effective context switch will also require
an improvement in the code’s readability.

• Develop at a comfortable workstation. A successful social activity must be
comfortable for all involved. Discomfort will dissuade people from wanting
to pair. Neither partner should be disadvantaged by the space, and adding
large monitors and good chairs make a bigger difference than you’d expect.

• End pairing when you get tired. Tired developers make more mistakes and
derive less effective solutions, pairing or not. But a good pairing session
sucks you in while time flies by, sometimes making it hard to notice that
your brain is operating at less than optimal capacity.

Pairing Smells

Unequal accessP a i r i n g
Smell:

D, Develop at a comfortable workstationRelates to:
Make sure that both developers can easily get
to the keyboard and see the monitor clearly,

What to
Do:

without having to play musical chairs or
perform acrobatics!
Keyboard dominationP a i r i n g

Smell:
B, Both parties contribute to a solutionRelates to:

PragPub June 2011 13

Ensure that keyboard control passes easily
between both programmers. Talk about what

What to
Do:

you’re doing, and learn to communicate in
code as well as spoken word.
Pair marriageP a i r i n g

Smell:
C, Change pairs frequentlyRelates to:
It’s easy to fall into the habit of working with
one or two people that you know better than

What to
Do:

the rest. Long-term, though, it’s far more
valuable to be able to understand and
collaborate with anyone on your team.
Worker/ResterP a i r i n g

Smell:
A, All production code is produced by a pairRelates to:
B, Both parties contribute to a solutionand:
We all get tired or frustrated with a task from
time to time, but a better solution than sitting

What to
Do:

back and disengaging is to be honest and
request a break or switch pairs.
Second ComputerP a i r i n g

Smell:
B, Both parties contribute to a solutionRelates to:
While some expert practitioners have found
using two computers effective, it’s too easy for

What to
Do:

a second computer to be a distraction for the
person not currently coding.
“Everyone does their own work”P a i r i n g

Smell:
A, All production code is produced by a pairRelates to:
B, Both parties contribute to a solutionand:
When a manager mandates individual
accountability, the interest in “getting my stuff

What to
Do:

done” can result in me giving short shrift to
“your stuff,” and thus reducing the overall
quality of the system.
“90% of work 90% done.”P a i r i n g

Smell:
B, Both parties contribute to a solutionRelates to:
Stories that aren’t completely implemented
are a result of individual interest in getting

What to
Do:

their tasks done, and not in producing a
combined solution.
People who can't stand to program togetherP a i r i n g

Smell:
C, Change pairs frequentlyRelates to:
Pairing or not, dissension on a team can
devastate its ability to deliver. At least with

What to
Do:

pairing, the issue becomes obvious to any good
coach or manager that intervention is required.

PragPub June 2011 14

Debates lasting more than 10 minutes without
producing new code.

P a i r i n g
Smell:

Well, this isn’t a direct violation of any of the
ABC’s of pairing, but it does go against the
core incremental nature of agile.

Relates to:

The more you learn to debate and demonstrate
in code, the more you will be comfortable with

What to
Do:

taking demonstrably safe incremental steps
(sometimes backward) to grow your system.

Sometimes the pair won’t notice any of these problems; a coach or any external
observer may have an easier time of spotting and suggesting solutions.

When Not Pairing

“But Tim and Jeff, we can’t pair all the time. We have odd numbers. We have
meetings where some people have to disappear for a while. Not everyone is in
the office at the same time. And we really like to have good excuses for why
we can’t pair.”

Each team and each day has its own challenges, but if you find yourself reaching
for the excuses, perhaps your team isn’t really interested in pairing. If you are
facing legitimate difficulties that prevent you from pairing, you’ll want to derive
some ground rules for how to proceed. Producing production code alone should
be a last resort, and if you check in to that resort, you need a backup
contingency to deal with that new, potentially frightful code.

The “When Not Pairing” Agile in a Flash [U3] card recommends a number of
useful tasks that can accelerate the whole team. Occasional breaks from pairing
allow your team to put effort into improving things in your environment that
might otherwise degrade. Build systems are an obvious target in most
teams—how many times have you cursed about the complexity of the build,
or the fact that it spews fifty pages of mostly worthless material that buries
questionable exceptions?

Not everyone wants to pair 100% of the time, either. Jeff looks forward to
having some time each week—even if it’s only a couple hours—to do things

PragPub June 2011 15

http://www.pragprog.com/refer/pragpub24/titles/olag/Agile-in-a-flash

like play around with alternate solutions for an upcoming story, to experiment
with a new API, or to clean up tests written earlier.

Programming solo? Just remember that there are always plenty of things you
can do that will benefit the rest of the team.

But Why?
We pair because we enjoy it. Recently, Jeff moved into a development role
where he found himself programming alone in an office for the bulk of the
day. That’s nothing new—he spent the first 18 years of his career not pairing
and often isolated in a cube or office. Now that he’s returned to solo
development, though, he yearns for the social interaction of a pair and the
ability to immediately bounce ideas and questions off someone else. It’s not
that he’s incapable of developing good software on his own, but he feels much
more effective when working as half of a programming pair.

Is our enjoyment enough to justify the cost of doubling up developers? Tim’s
recently been concerned that we spend too much time talking about personal
enjoyment in the office space—no doubt a reaction to some folks’ insistence
that “this is all serious stuff and money we’re talking about. The business doesn’t
care whether or not you’re happy, you should just be happy to have a job.”
Harumph. Burnout, employee turnover, and the low-quality product of
disgruntled workers is something the business should be dearly concerned with.

In any case, there are many reasons to embrace pairing: Benefits can accrue
for programmers, their managers, and for the business as a whole. We’ll talk
about those benefits of pairing next month.

About Jeff
Jeff Langr has been happily building software for three decades. In addition to co-authoring
Agile in a Flash [U4] with Tim, he’s written another couple books, Agile Java and Essential Java
Style, contributed to Uncle Bob’s Clean Code, and written over 90 articles on software
development. Jeff runs the consulting and training company Langr Software Solutions from
Colorado Springs.

About Tim
Tim Ottinger is the other author of Agile in a Flash [U5], another contributor to Clean Code, a
30-year (plus) software developer, agile coach, trainer, consultant, incessant blogger, and
incorrigible punster. He writes code. He likes it.

Send the authors your feedback [U6] or discuss the article in the magazine forum [U7].

External resources referenced in this article:

[U1] http://www.pragprog.com/refer/pragpub24/titles/olag/Agile-in-a-flash

[U2] http://www.pragprog.com/refer/pragpub24/titles/olag/Agile-in-a-flash

[U3] http://www.pragprog.com/refer/pragpub24/titles/olag/Agile-in-a-flash

[U4] http://www.pragprog.com/refer/pragpub24 /titles/olag/Agile-in-a-flash

[U5] http://www.pragprog.com/refer/pragpub24/titles/olag/Agile-in-a-flash

[U6] mailto:michael@pragprog.com?subject=agile-reflections

[U7] http://forums.pragprog.com/forums/134

PragPub June 2011 16

http://www.pragprog.com/refer/pragpub24%20%20/titles/olag/Agile-in-a-flash
http://www.pragprog.com/refer/pragpub24/titles/olag/Agile-in-a-flash
mailto:michael@pragprog.com?subject=agile-reflections
http://forums.pragprog.com/forums/134
http://www.pragprog.com/refer/pragpub24/titles/olag/Agile-in-a-flash
http://www.pragprog.com/refer/pragpub24/titles/olag/Agile-in-a-flash
http://www.pragprog.com/refer/pragpub24/titles/olag/Agile-in-a-flash
http://www.pragprog.com/refer/pragpub24%20%20/titles/olag/Agile-in-a-flash
http://www.pragprog.com/refer/pragpub24/titles/olag/Agile-in-a-flash
mailto:michael@pragprog.com?subject=agile-reflections
http://forums.pragprog.com/forums/134

