
ThePragmatic
Bookshelf

PragPub
Keeping It Light

Issue #109
July 2018

IN THIS ISSUE:

* Launching our tenth year!

* Russ Olsen asks Fermi questions
* Marcus Blankenship

micromanages programmers
* Jeff Langr reflects on

the meaning of pragmatism
* Novi Milenkovic challenges

best practices and tames
complexity in UX design

* Michael Swaine reboots
the Harvard Mark I computer

* and John Shade hates driving

Plus all the new tech books,
a puzzle, and the launch of our
new science fiction department!

PragPub July 2018

Contents

FEATURES

The Pragmatic Path .. 12
by Jeff Langr

Jeff reflects on what pragmatic programming means as this magazine enters its tenth year and The Pragmatic Programmer
enters its twentieth.

When Best Practices Can Hurt You ... 19
by Novi Milenkovic

Best practices, followed blindly, can give you false confidence. And the average user does not exist.

Tom Watson, Howard Aiken, and Who? ... 24
by Michael Swaine

Last month we attended a soirée at the home of Charles Babbage. This month we attend a festive event in the basement
of Harvard’s Cruft Laboratory at 6 Oxford Street in Cambridge, Massachusetts.

COLUMNS

Swaine’s World .. 3
by Michael Swaine

In which Mike loses his job and offers you career advice. Originally written Tuesday, May 12, 2009.

Technically Awake ... 6
by Russ Olsen

How many M&Ms does it take to equal the weight of the Sun?

New Manager’s Playbook ... 9
by Marcus Blankenship

If it was good enough for Henry Ford...

Shady Illuminations .. 45
by John Shade

We need to lock up Jerry Seinfeld and James Corden.

— i —

BOOKS

Antonio on Books ... 29
by Antonio Cangiano

The Rust Programming Language. Plus 19 other new tech books.

From The Pragmatic Bookshelf ... 32
An excerpt from Programming Phoenix 1.4 plus the top sellers and author events from The Pragmatic Bookshelf.

Beyond the Fields We Know ... 41
by Michael Swaine

RIP Harlan Ellison.

DEPARTMENTS

On Tap .. 1

The PragPub Puzzle .. 11

Solution to Puzzle ... 43

The BoB Page .. 44

Except where otherwise indicated, entire contents copyright © 2018 The Pragmatic Programmers.

You may not sell this magazine or its content, nor extract and use more than a paragraph of content
in some other publication without our permission.

Published monthly in PDF, mobi, and epub formats by The Prose Garden, LLC, Cave Junction, OR. E-Mail
webmaster@swaine.com. The editor is Michael Swaine (michael@pragprog.com).

ISSN: 1948-3562

— ii —

On Tap
What’s Up

What’s here and who did it.

With this issue, PragPub is entering its tenth year. Friend of the magazine Jeff
Langr takes the occasion to reflect on the past nine years of PragPub, the 19
years since the publishing of The Pragmatic Programmer, and the nature and
meaning of pragmatism.

Your editor is also in a reflective mood, and offers up a moment in the history
of the computer, focusing on three individuals — Tom Watson, Howard Aiken,
and Norman Bel Geddes. Each had an important part to play in the creation
of an important early computer. Grace Hopper and Charles Babbage make
cameo appearances, too.

Novi Milenkovic makes his first appearance in our pages, but not his last, with
a thoughtful essay on agile practices, UX design, and the management of
complexity. Best practices, he decides, can sometimes lead you astray.

Russ Olsen writes about Fermi questions this month. These are questions like,
how many taxi cabs are there in New York City? Or how many M&Ms does
it take to equal the weight of the Sun? Or how many pennies would you have
to stack to equal the height of Mount Everest? Crazy questions for which you
would think you lack the data to even make a plausible guess. But it turns out,
you can often do better than that. Estimation on the basis of excruciatingly
limited data is not an uncommon situation in software development, and
sometimes this seems so impossible that we just guess. But you can, Russ
explains, do better than that.

Marcus Blankenship, in his regular column on managing programmers, takes
a surprising stance this month. I’ll leave it at that. Antonio Cangiano surveys
all the recent tech books and is particularly taken by one on the Rust language.
We have an excerpt from the upcoming Pragmatic Bookshelf book, Programming
Phoenix 1.4. John Shade returns to the topic of self-driving cars. And this
month’s puzzle is a sudoku plus an anagram plus some really lame puns on the
names of Turing award winners.

Oh, and we’re launching a new feature focusing on science fiction.

We hope you enjoy it!

Who Did What
writing, editing: Michael Swaine mike@swaine.com

editing, markup: Nancy Groth nancy@swaine.com

customer support, subscriptions: mike@swaine.com

submissions: Michael Swaine mike@swaine.com

extreme curation: BoB Crew

PragPub July 2018 1

reclusive curmudgeon: John Shade john.shade@swaine.com

data protection officer: Michael Swaine mike@swaine.com

Photo Credits
Cover and page 1: “Fireworks Art” [U1] by nickgesell is licensed by Creative
Commons 2.0.

Pages 11 and 43: “Puzzle” [U2] by voyeg3r is licensed by Creative Commons 2.0.

Page 12: “Birthday Cake with Candles” [U3] by Keith Hinkle is licensed by
Creative Commons 2.0.

Page 19: “TC40 TechCrunch 40: More Powerset Test Tubes with Vodka” [U4]

by Brian Solis is licensed by Creative Commons 2.0.

Page 24: “Harvard University Campus Harvard Mark I Computer” [U5] by Ted
Eytan is licensed by Creative Commons 2.0.

Pages 29 and 32 and 41: “Books - Colored” [U6] by frankes is licensed by Creative
Commons 2.0.

We take seriously our responsibility to safeguard your personal data. Our privacy
policy is here [U7].

You can download this issue at any time and as often as you like in any or all of our
three formats: pdf [U8], mobi [U9], or epub [U10].

PragPub July 2018 2

https://pixabay.com/en/new-year-s-eve-leipzig-fireworks-1953253/
https://openclipart.org/detail/192568/puzzle
https://www.flickr.com/photos/burningkarma/2603562956/in/photolist-4Y4Wyu-iw7eBC-4GFsHK-zB4vz-27aCWYo-7WJccx-gtJCb-dCuJ3k-3sLEy2-FmM8Bt-aCfVS-7smfiD-kCzHAX-7ywbns-4LQ5a-dp4tNc-wUjJq-oG2ZT-4mxXUo-8uSr3N-5yBVjw-9TP3Hx-9gpBFx-mAN7Ht-64HYRQ-cUPL7A-8raL-ausP8Y-48wUiN-fnAbDK-dPRqcH-2Sx7mZ-f4WWH5-7f9wU4-28g5th8-qmfyPA-dHr9X-96i95u-84XY65-npVKQ5-5z6Cbr-7kaQaL-7YaVqY-4mtUsV-a3QRw1-9WqsRC-e8ZfK6-4pxu1t-vM57b-6QvZLP
https://www.flickr.com/photos/briansolis/1405358011/in/photolist-39bPYx-bbewDz-aPfPh8-6Ad8dV-7iJHLD-mHwBFZ-mAuJA-25v82Yf-pokP36-hn4jHX-kvnUPT-5VC2bd-W8PEYj-omNmfq-9H9yiW-cYAFSS-5uobbG-dfF1wd-57hdY2-WwiShR-a3ehM9-93e3i2-93h9P9-8NS4mK-aAAXDG-5DeKov-3VF31v-8V3hwh-21inHSo-oPWc8M-27ferPL-965fFV-ij1a6r-5xSYH8-jLJBHL-xfSCo-UY8dFv-fsnhFS-dfF1ZQ-fAts7o-sLpC23-boRgrE-7TXebp-LotLL-dfEYa8-5uiPV4-dUbf1A-dYjQhD-cYAE37-5uiPAX
https://www.flickr.com/photos/taedc/16640248576/in/photolist-roBtCz-rmrCaw-CH4r5G-7YXP7L-7YXP6A
https://openclipart.org/detail/245570/bookes-coloured
https://theprosegarden.com
https://s3-us-west-2.amazonaws.com/pp-2018/PragPub_July_2018.pdf
https://s3-us-west-2.amazonaws.com/pp-2018/PragPub_July_2018.mobi
https://s3-us-west-2.amazonaws.com/pp-2018/PragPub_July_2018.epub

The Pragmatic Path
Heading into Ten and Twenty Years of
Pragmatism

by Jeff Langr

Jeff reflects on what pragmatic programming means
as this magazine enters its tenth year and The
Pragmatic Programmer enters its twentieth.

With this issue, we head into the tenth year of PragPub, a celebration of
pragmatic software development. We also head into the twentieth year after
publication of The Pragmatic Programmer, the groundbreaking 1999 book by
Andy Hunt and Dave Thomas that remains a favorite of many developers,
even after two decades. We are in the era of pragmatism!

But what does it mean to be pragmatic? The philosophical tradition of
pragmatism promotes acting on ideas in order to vet them with actual human
experiences. [1] This modern pragmatic movement dates back to around 1870.
However, as The Pragmatic Programmer tells us, the original notion of pragmatic
derives from Greek word pragmatikos, meaning “fit for business.” Or in rawer
form, simply “do.”

The word was in use in French during the 15th century, where it was used for
public decrees of power — pragmatic sanctions — which were backed by the
force of law. For a time, “pragmatic” had a very negative connotation —
“meddlesome” or even “fussy” — the negativity likely emphasized by folks who
received the business end of the sanctions.

Today, our simple interpretation of the meaning of pragmatic comes without
negative connotation. It can be associated with notions of “practice” and
“practicality.” It is probably the best antonym for “idealistic,” although, Andy
Hunt tells me that “idealist” isn’t the best antonym for pragmatic, “dogmatic”
is.

The Pragmatic Programmer helped refuel the flame of pragmatism for the next
generation and more. Hunt and Thomas summarized the key qualities of a
pragmatic programmer as someone who:

• Is an early adopter

• Adapts rapidly

• Embraces inquisitiveness and critical thinking

• Is a realist

• Is a jack-of-all-trades. [2]

Of these qualities, “realist” most directly aligns with the classic notion of
pragmatic. “Adapts rapidly” and “realist” also work as characteristics a dogmatist
would not have. And all but one necessitates hands-on exploration and
practice.

The landmark book is chock-full of simple techniques and approaches that
aid in building quality software. Hunt and Thomas touch upon just about
everything a 1999 developer should know about how to succeed in a pragmatic

PragPub July 2018 12

fashion: testing, assertions, design, debugging, using an editor, Unix commands,
writing an email, distributed objects, source control, software process and team
dynamics, big O notation, writing specs, problem solving, and of course … all
that and more! Hunt and Thomas also introduced us to two extremely useful
concept inventions of theirs — tracer bullets and DRY (“don’t repeat yourself”)
— that remain powerful today.

Who’s Not Pragmatic?
But wait … whoever said programmers shouldn’t be pragmatic? Were we not
pragmatic in 1999? What does it even mean to not be pragmatic?

If you built software before the 1990s, you grew up in an era where computing
resources were scarce. Every CPU second mattered. You were taught to work
up your designs and even your code on paper first, before you dared offer them
to the computer. Feedback cycles were long; as a result, the lesson you learned
from an error was to invest an even larger amount of up-front thinking time.
The natural result was an increased use of, and more formalization of,
speculative design method, which in turn set the seed for more purist, or
idealist, approaches to programming.

If you built software in the 1990s, you learned about a number of ideas for
programming, many of them predicated on the fact that software was hard to
change. Proponents of things like “late design” suggested that the best thing
we could do is to invest the vast majority of our effort in getting the design
right, and only then constructing the code. (I recall being told that 90% of
the development effort should be design.) Maybe this approach was the right
track: Where we were headed was a magical world where we could draw pictures
(models) that represented the system, and the code would be generated for us.

This concept of self-coding systems didn’t seem far-fetched to some. In 1995,
I worked with a fellow named Jan who honestly believed we would need no
programmers in ten or so years. Never mind that drawing complex diagrams
around system interactions is still programming of a sort — perhaps “visual
programming” — and never mind that visual interaction models aren’t the
most succinct or even clearest way of representing what systems need to do.
(Think “mathematics,” as one simple example, a peskily pervasive programming
need.)

Still, the premise had a strong hold: We should be able to represent what a
system must do by first modeling it … then sitting back and letting a
programmer or computer (which, by the way, was another word for
“programmer” in the 1950s) do the dirty work. Henceforth, came the rise of
UML and model-heavy design methodologies, where a team of well-paid
architects and designs could draw pictures of the system, and lower salary folks
could type in code for those pictures without having to think too hard. Also
came ideas like use cases, where we could model the requirements in narrative
form, and another team of programmers could build to those narratives.

Scaling Everest
In 1995, I worked on a large project at the defunct telecommunications
company MCI. The goal of the multi-year effort named “Everest” was to
re-engineer MCI’s revenue stream systems, this time capitalizing on the promise

PragPub July 2018 13

of object-oriented development. I joined about a year into the project and left
a year later, one year shy of its demise. Late in my one-year tenure, we hadn’t
delivered a line of code (and the project never would). We had delivered a
first collection of use cases — maybe a few dozen written pages’ worth —
painstakingly authored as a result of bickering in a closed-door meeting room
for three solid weeks.

What did we bicker about? Things like “Are these the right granularity?,” and
“Should we use the word ‘should’ or ‘will’ here?” The use cases themselves
weren’t all that illuminating — basically the same CRUD patterns repeated
for a couple handful of data structures. To me, it seemed an enormous waste
of time. I was much happier trying to start building out the Smalltalk code
that would implement them.

Construct use cases and UML — weren’t themselves the problem. In fact, I
still find pragmatic value in them today. The problem was the insistence that
they should be produced in whole, to highly detailed depths, before software
construction began — in other words without feedback to verify aspects of the
proposed design. This dogmatic approach, per Hunt, was and still is the
problem.

Reaching for the Horizon
As things got worse for Everest at MCI, a manager named Mike called about
20 of us into a room to brainstorm rescue ideas. He worked his way around the
table, soliciting an idea from everyone there. I had no grandiose ideas; just
one simple one related to a smaller but significant challenge: We were trying
to consolidate half a dozen or so separate systems. Each system had its own
notion of what a customer was, and the granularities were different — a single
conglomerate customer in one system might appear as three separate customers
in another, one for each subsidiary. We found a third-party solution that would
purportedly handle the reconciliation for us — given a customer name, it
would provide a unique cross-system identifier.

“We haven’t produced any code,” I said. “It would be nice to be able to
demonstrate that we know how to build and deliver something, anything.
What about the portion of the system that we’ll need to reconcile customer
names? It would be small, but I think it would be worthwhile to ship something,
and then build on it.”

“Yeah, that sounds nice,” said Mike, “but it’s just not going to be enough. We
need something bigger.” No one else came to the defense of my feeble idea. I
suppose I must not have had the conviction to continue pushing it. Shortly
thereafter, the project underwent yet another management upheaval and
“they” replaced Smalltalk with C++. A few more management missteps and
I realized the project was doomed. I also realized the biggest demotivator: to
not be able to deliver anything. A year without delivery was my worst year of
software development to that point, and also the worst to today.

About two-thirds of the journey through this three-year, $180 million waste,
most people on the team saw the writing on the wall. If there was any doubt,
we all realized the project was doomed when “they” renamed the project from
Everest to Horizon. First words out of the mouths of many: “Oh yeah … that
distant place you can see but never reach.”

PragPub July 2018 14

My worst year — a year without delivery — was a year lacking in pragmatism
and high in dogmatic pronouncements. We had succumbed to an ideal: we
could not deliver anything until the design and software was perfect and
complete.

Abundance and XP
During the 1990s, Moore’s law and other factors — a free market and an
egalitarian attitude helped — meant that computing resources were becoming
highly abundant. Hobbyists could now afford to buy modestly priced computers
just to play with and explore. The World Wide Web meant that information
about how to build software was becoming ubiquitous. We no longer needed
to wait for those in the ivory tower to tell us what to do.

I discovered The Pragmatic Programmer and extreme programming (XP) at
about the same time in 1999. For the most part, the ideas they promoted
weren’t terribly new — but many of them had been impractical up until that
point. Test-driven development (TDD) is tough to do when build cycles are
several minutes or worse. It’s effective only when build cycles are
near-instantaneous — something that Java and Smalltalk were able to provide
at the time.

The core technical elements of XP seemed liberating to me. Yes, design is
extremely important. It’s so important that we need to find a way to think
about design (and ensure it’s kept clean) continually. XP offered several
controls, both technical and supporting, to ensure that we could safely tweak
the design as needed, at any given moment: TDD (with the ability to
continually address design through refactoring built into its cycle), simple
design, continuous integration, metaphor, and continual review via pairing.

Once you realize that it’s possible to continually shape the design with low
levels of risk and fear, you realize that producing a single up-front, speculative
design is insufficient and even borders on malpractice.

XP seemed the very embodiment of pragmatism. It promoted a very
code-centric, hands-on approach that allowed for continual design exploration.
I thought of the TDD cycle as supporting a long chain of very short
experiments.

XP was largely understood as a collection of practice, backed by a set of core
values. That definition also led to its being perceived as overly prescriptive
and thus dogmatic. The backlash, along with the rise of Scrum, led to folks
not talking much about XP by the late 2000’s. Was the pendulum swinging
back to less pragmatism?

Wise teams continued to adopt many of XP’s technical practices in order to
help their codebase survive over time. They just stopped calling it XP.

Agile With a Big A
XP was one of the methodologies covered under the agile umbrella at the time
of the signing of the Agile Manifesto in 2001. To support a larger umbrella,
the manifesto’s core values and principles assimilated ideas from other
anti-heavyweight processes such as Scrum and Crystal. But that meant the
umbrella had to push XP’s technical practices out into the rain.

PragPub July 2018 15

While Agile is largely a set of values and principles, teams still tend to gravitate
to the ceremonial practices promoted by many of the processes under the
umbrella. The daily standup (or “daily scrum”) is a perfect example.

Daily standups were intended to kick off the day with a brief, pragmatic plan
for how we’d work together. What they became in most organizations was
evidence that dogma will rear its ugly head in the absence of continual
vigilance. The typical standup looks like a glorified status report in
three-question inquisition form, not a planning meeting.

In 2000, we used index cards to track things. I’m not recalling the price in
2000, but you can still get a pack of 100 cards for about a buck and a half. It
was practical and prudent. Today, you can also choose to pay $245 per month
for a team of ten users for one of the major “agile project management” tools.
Even without a bulk discount, that will net you over 12,000 index cards per
month.

You can also invest heavily in a framework that will help you scale your agile
efforts. Here’s a picture of one; it’s small, because I’d rather not risk bogging
you down in the considerable amount of depth required to understand this
simplest-possible version of the framework.

In my estimation, high-performing Agile teams are fairly rare. A practical,
sensible approach would suggest that we ensure we can get at least one team
really working well before we sink a whole company into a scaling framework
(SAFe, LeSS, DaD, LeadingAgile, etc.) and all the support it demands.

Over the years, as Agile moved across the chasm to mainstream success, Agile
became co-opted by ideologues, dogmatics, and big-dollar products. Index card
sales didn’t increase much (you can’t even find them in Europe!).

PragPub and Pragmatism
Hunt and Thomas published the first issue of the monthly PragPub in July
2009. Hunt kicked it off with the following summary: “PragPub is a look into
the pragmatic world: it’s a peek at what we’re excited about, what our authors
are excited about, and what we hope you can get excited about.” Michael
Swaine took on the editing role, and made sure it was clear that “this monthly
publication is all about doing.”

With that first issue, we were in the midst of a financial crash, so the
publication led off with Andy Lester’s article providing numerous tips on how
to avoid and survive layoffs. After that, we read an interview with Rich Hickey,
creator of Clojure — the Lisp-and-JVM-based functional language that had

PragPub July 2018 16

seen its first stable release only a couple months earlier. Stuart Halloway,
author of Programming Clojure — also published only a couple months prior
— immediately followed up with a very hands-on article about handling
exceptions in the language. We were on track with the “early adopter”
characteristic of pragmatic programmers! Dave Thomas wrapped up the feature
articles as the subject of an interview on ebooks and “the future of publishing.”

Each issue of PragPub comes packed not only with in-depth, feature articles,
but also with a bevy of entertaining and useful columns: editorials, puzzles,
programming challenges, conferences and speaker calendars, information on
new books, and more!

I’m thankful to have been part of the ten years of PragPub. It’s an honor to
have published articles alongside the many well-known pragmatic folks whose
work has appeared in the magazine.

A Changing World
Things in the software world have changed dramatically since that first issue!
In 2009, developers typically pledged fealty to a single language — perhaps
C++, Java, C#, or even Ruby — in what I might call monolingual organizations.
Today, the typical programmer tends to be a polyglot working in an
organization using three or more different programming languages. Per Andy
Hunt: “A pragmatic programmer uses the right tool for the job, and knows
why it’s the right thing to do in this situation.”

PragPub helped us get to the polyglot shop, providing us with numerous articles
that not only presented overviews of new or boutique languages, but in many
cases explored them in considerable depth. We learned about Scala, Swift, J,
Haskell, F#, Clojure, Lua, Crystal, Go, Groovy, Elixir, Wolfram, and some old
standbys like C, Python, Perl, Fortran, and COBOL. We dug into JavaScript
and some of its frameworks and offshoots — PureScript, Angular 2, Ember,
ClojureScript, CoffeeScript. And we also learned about the most predominant
languages, too, with articles about C++, Java, and Ruby.

Tools and technologies? PragPub covered a wide variety — Awk, ASP.NET
MVC, Re-Frame, Cucumber, GitHub, Vim, CSS, Sass, JSON, HTML5,
TextMate, the Apple Watch, Xcode, Hadoop, Arduino, iOS, and Android,
to name a few.

Techniques and concepts? We learned about legacy code, low-code, pair
programming, testing, unit testing, microservices, mock objects, recursion,
retrospectives, estimation, the Mikado Method, De Morgan’s law, NoSQL,
technical debt, technical blogging, how to teach kids, how to write well,
responsive design, presentation skills, pomodoros, management, security,
distributed development, home recording, how to coach others, QA, sales,
interviewing, and how to get a job. Or how to hire for one. All in a hands-on
practical manner.

We also learned a lot about computing history, to help us understand how we
got here, as well as the mistakes we might be able to avoid a second time
around.

What all these articles have in common is, of course, their focus on pragmatism.
In a few short pages, we gained wisdom from experts on the topic — not just

PragPub July 2018 17

ivory tower idealists, but people who’ve actually seen the technologies applied
on production software and projects.

Experimental and Controversial
Where I find the true value in PragPub is that it hasn’t shied away from
publishing articles about controversial new “experiments.” From pair
programming to mob programming to #NoEstimates, pragmatic authors have
raised hackles and ruffled feathers by daring to challenge the status quo —
particularly the status quo dogmatically promoting idealistic approaches. And
more often than not, these challenging topics have held up to scrutiny and
gotten well past the notion of being a fad.

You might not think that some of the topics PragPub has covered are at all
controversial today:

• agile

• behavior-driven development (BDD)

• functional programming

• diversity

• distributed programming

• Bitcoin

• net neutrality

• test-driven development (TDD)

But they were all once highly controversial (and still are today to many people).
That many have crossed the chasm is because pragmatic folks have been vetting
them and writing about how to succeed with them over the past decade.

And if all that tech wasn’t entertaining enough: Zombies were once a rarer
breed of monster, perhaps controversial due to their statement about modern
society. Nowadays zombie entertainment is rampant, and so through PragPub
we got James Grenning to tell us how to do “TDD Guided by ZOMBIES” in
June of last year.

May you enjoy our tenth year of PragPub, and to the next twenty plus one of
your pragmatic career!

[1] Gutek, Gerald. Philosophical, Ideological, and Theoretical Perspectives on
Education. 2016, Pearson, New Jersey. pp 76, 100.

[2] Hunt, Andrew and Thomas, David. The Pragmatic Programmer. 1999,
Addision-Wesley Professional.

About the Author
Jeff Langr has been pragmatic most of his life, which includes 35+ years of software development.
In addition to being a member of the Pragmatic Bookshelf technical advisory board, Jeff has
written a handful of books (including Modern C++ Programming With Test-Driven Development
[U1]), contributed to Clean Code, and written a hundred or more articles. He can help you with
consulting, development, training, coaching, and mentoring services provided through Langr
Software Solutions, Inc. Jeff resides in Colorado Springs.

External resources referenced in this article:

[U1] https://pragprog.com/book/lotdd/modern-c-programming-with-test-driven-development

PragPub July 2018 18

https://pragprog.com/book/lotdd/modern-c-programming-with-test-driven-development
https://pragprog.com/book/lotdd/modern-c-programming-with-test-driven-development

