
Copyright © 2007, Langr Software Solutions. All Rights Reserved.

Test-Driven Development vs. Test-After Development
Doing TDD Well

Jeff Langr
Langr Software Solutions

http://langrsoft.com

2Copyright © 2007, Langr Software Solutions. All Rights Reserved.

Test-Driven Development

A design technique

3Copyright © 2007, Langr Software Solutions. All Rights Reserved.

 Test-after (TAD) vs. Test-first (TDD)
• Allows some refactoring
• Coverage levels up to ~75%
• No direct design impact
• Can reduce defects
• Can be treated as separate task

• Enables continual refactoring
• Coverage approaching 100%
• Drives the design
• Significantly reduced defects,

debugging cycles
• Part of the coding process
• Clarifies, documents

understanding of requirements
• Continual progress, consistent

pacing
• Continual feedback and learning
• Sustainable

Unit Testing

Unit testing is:
- expensive
- never the whole picture

4Copyright © 2007, Langr Software Solutions. All Rights Reserved.

Doing TDD Well:
Some Simple Suggestions

There is no “advanced” TDD

5Copyright © 2007, Langr Software Solutions. All Rights Reserved.

Doing TDD Well—Think About

• Spec by example
• Testability and design
• Incrementalism

• Keeping it simple

It's just code!

6Copyright © 2007, Langr Software Solutions. All Rights Reserved.

Doing TDD Well

Practice

7Copyright © 2007, Langr Software Solutions. All Rights Reserved.

Doing TDD Well

Pair

8Copyright © 2007, Langr Software Solutions. All Rights Reserved.

Doing TDD Well

Paraphrase

9Copyright © 2007, Langr Software Solutions. All Rights Reserved.

Test everything
– Use integration tests if necessary, but minimize
– Don't avoid tests for difficult challenges
– Decompose tougher problems; isolate complexity

10Copyright © 2007, Langr Software Solutions. All Rights Reserved.

Fail first
Take smaller steps than you are now

11Copyright © 2007, Langr Software Solutions. All Rights Reserved.

Run all the tests
10-minute rule

– Discard code
– Requires fast tests

• Unit vs. integration isn't as important as fast vs. slow

12Copyright © 2007, Langr Software Solutions. All Rights Reserved.

Keep the build green

13Copyright © 2007, Langr Software Solutions. All Rights Reserved.

Refactor zealously
– Little things matter
– Tests too
– Consider “2nd time” instead of “3rd

time” refactoring

 writer.write(headerText);
 writer.newLine();
 writer.write(detailText);
 writer.newLine();

 writeLine(writer, headerText);
 writeLine(writer, detailText);

 private void writeLine(
 BufferedWriter writer, String text)
 throws IOException {
 writer.write(text);
 writer.newLine();
 }

14Copyright © 2007, Langr Software Solutions. All Rights Reserved.

Don't forget OO 101
– Very small single-responsibility classes
– Minimized coupling

SomeClass

+methodA
+methodB
+methodC
+methodD
-methoda
-methodb

AClass

+methodA

BClass

+methodB

AnotherClass

+methoda

BnotherClass

+methodb

CDClass

15Copyright © 2007, Langr Software Solutions. All Rights Reserved.

Heed cohesion in tests
– Decrease asserts per test

• But don't insist on “always one”
– Build tests around behavior/cases, not methods
– Build fixtures around common setup

16Copyright © 2007, Langr Software Solutions. All Rights Reserved.

Rename continually

@Test public void something()
@Test public void create()
@Test public void defaultCreate()
@Test public void isEmptyOnDefaultCreation()

17Copyright © 2007, Langr Software Solutions. All Rights Reserved.

Don't overuse mocks
– But don't refuse to use them
– Mocks tightly couple tests to production code

• Can violate encapsulation
• Can inhibit refactoring

18Copyright © 2007, Langr Software Solutions. All Rights Reserved.

Use good tools
Master them

19Copyright © 2007, Langr Software Solutions. All Rights Reserved.

Don't code for the future
Think and act hard about the present
Keep a to-do list

– Scrap by check-in, task, day, iteration end

20Copyright © 2007, Langr Software Solutions. All Rights Reserved.

Never be blocked! (Uncle Bob's “prime directive”)
Abstract away volatility
Decouple from others
Don't wait for definition

- Start the feedback loop
- Start the process

21Copyright © 2007, Langr Software Solutions. All Rights Reserved.

Read
– Books

• Test Driven: TDD and Acceptance TDD for Java
Developers, Lasse Koskela

• xUnit Test Patterns, Gerard Meszaros
• Implementation Patterns, Kent Beck

– Articles
– Yahoo! groups

• testdrivendevelopment, extremeprogramming, JUnit, etc.

22Copyright © 2007, Langr Software Solutions. All Rights Reserved.

Work as part of a team
– Look for standards
– Welcome opportunities to review
– Talk frequently

23Copyright © 2007, Langr Software Solutions. All Rights Reserved.

Remain humble
– Keep an open mind
– Be willing to back up and take a different approach
– Be willing to change how you develop
– Revisit failures, to learn
– Get some rest

24Copyright © 2007, Langr Software Solutions. All Rights Reserved.

Doing TDD Well

TDD is a skill.

Practice,
practice,
practice.

